
Naval  Aerospace  Medical  Research  Laboratory 

NAMRL-1404 

PROBABILITY OF SUCCESS IN PRIMARY 
FLIGHT TRAINING AS A FUNCTION OF 
ASTB SCORES AND API GRADES: AN 
EXAMPLE OF THE STATISTICAL 
INFERENCING COMPONENT OF THE 
PILOT PREDICTION SYSTEM 

D. J. Blower 

y 

1 i 

#:: 

*' Naval Aerospace Medical Research Laboratory 
51 Hovey Road 

jvfln jp 1T.TW reaweffrgrt A       Pensacola, Florida 32508-1046 

Approved for public release; distribution unlimited. 



Reviewed and approved 3 0 Af&lf J?D 

C. G. ARMSTRONG, CAPT, MS^tJSN 
Commanding Office 

This research was sponsored by the Naval Medical Research and Development Command under work unit 
62233NMM33P30.001-7801. 

The views expressed in this article are those of the authors and do not reflect the official policy or position of the 
Department of the Navy, Department of Defense, nor the U.S. Government. 

Volunteer subjects were recruited, evaluated, and employed in accordance with the procedures specified in the 
Department of Defense Directive 3216.2 and Secretary of the Navy Instruction 3900.39 series. These instructions are 
based upon voluntary informed consent and meet or exceed the provisions of prevailing national and international 
guidelines 

Trade names of materials and/or products of commercial or nongovernment organizations are cited as needed for 
precision. These citations do not constitute official endorsement or approval of the use of such commercial materials 
and/or products. 

Reproduction in whole or in part is permitted for any purpose of the United States Government. 



NAVAL AEROSPACE MEDICAL RESEARCH LABORATORY 
51 HOVEY ROAD, PENSACOLA, FL 32508-1046 

NAMRL-1404 

PROBABILITY OF SUCCESS IN PRIMARY FLIGHT TRAINING AS A 
FUNCTION OF ASTB SCORES AND API GRADES: AN EXAMPLE OF 

THE STATISTICAL ESfFERENCING COMPONENT OF THE PILOT 
PREDICTION SYSTEM 

D. J. Blower 

Approved for public release; distribution unlimited. 



ABSTRACT 

The Pilot Prediction System (PPS) is a research effort designed to provide Navy managers and other decision 
makers with improved access to selection and training data. Many disparate data bases, each containing partial and 
sometimes overlapping information on selection data and training performance, currently exist There has been no 
attempt to coordinate the bits and pieces gathered into these local databases into a coherent whole. Such data needs 
to be merged and the anomalies excised so that a more global picture of selection data and training performance 
can emerge. In addition, the targeted users of the PPS should be shielded from the low-level technicalities of the 
data base because such technical details are of no concern to them For the same reason, the statistical 
manipulations that provide extrapolations from the data base to new cases can be hidden from view. This report 
documents the first efforts at constructing the statistical modeling component of the PPS as derived from Bayesian 
statistical decision theory. It enables the potential user of the PPS to predict success in primary flight training for 
flight students based on their scores on selection tests and ground school performance. 
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INTRODUCTION 

The Pilot Prediction System (PPS) is a research effort designed to provide Navy managers and other decision 
makers with improved access to selection and training data. In the past, our collaborative work with the Chief, 
Naval Education and Training (CNET) has pinpointed certain deficiencies in providing technical support for 
high-level policy questions concerned with selection and training issues. 

Many disparate data bases, each containing partial and sometimes overlapping information on selection data 
and training performance, currently exist The data in these databases are. often structured according to different 
software formatting conventions. The proprietors of these data bases are geographically dispersed and under the 
control of different administrators. The quality of the data varies greatly. There has been no attempt to coordinate 
the bits and pieces gathered into these local databases into a coherent whole. These disjunctive data need to be 
merged and the anomalies excised so that a more global picture of selection data and training performance can 
emerge. When managers need to make a decision based on training data they should have to consult only one 
comprehensive, error-free data base. 

In addition, the targeted users of the PPS should be shielded from the low-level technicalities of accessing the 
data base as well as the statistical manipulations that provide extrapolations from the data base to new cases. One 
of the PPS's major goals is to provide access to an improved data base in a "user-friendly" manner. One analogy 
that we employ quite often in describing the PPS is that it should function much like a typical spreadsheet. This 
would allow users to conduct "what-if' analyses on scenarios of their choosing. This spreadsheet would operate at 
the user's desired level of what is important and keep, what is for them, the unimportant technical operations 
bidden from view. 

A primary consideration of this project is to provide statistical models that allow decision makers to take full 
advantage of the available data in order to make predictions about the future success of an individual. A map or 
schematic of the overall selection and training flow would be shown to the user on system start-up. The potential 
user of the system need only indicate via a mouse click which available data connected to the map should go into a 
model as predictor variables. Likewise, a mouse click would indicate which criterion variable is desired. The 
appropriate section of the map would then be highlighted to show the user what portion of the overall schema he 
has chosen to investigate. The user could then indicate which candidate he is interested in looking at. The system 
would automatically fetch the required data for this individual from the data base. 

The PPS would link these choices into a statistical model. The numerical routines in the software would then 
perform an inference indicating the predicted outcome for this individual on the chosen criterion and then, most 
importantly, also provide the degree of confidence that the user might have for this prediction by the system 

For example, scores on the various subtests of the Aviation Selection Test Battery (ASTB) and the overall Navy 
standard score from Aviation Preflight mdoctrination (API) could be the predictor variables of interest Graduation 
or attrition from primary flight training could be the criterion of interest Perhaps a student comes before a 
Progress Review Board because of substandard performance during scheduled early familiarization flights in 
primary flight training. Entering the student's Social Security Number into the system would immediately access 
his/her ASTB scores and overall performance during API from the data base and enter them into the statistical 
model. The PPS would then show whether this student was a predicted pass or a predicted fail from primary flight 
training. In addition, the confidence level of this prediction would be indicated by giving the probability of this 
prediction being true. This student might be a predicted pass given his/her pattern of scores, but the probability of 
the predicted pass would be only 60%. A threshold confidence level might have been established at, say, an 80% 
confidence level with the result that this student might be moved into the predicted fail category. 

In this fashion we envision the PPS as being useful to the Commodore of the Training Wing where this student 
was undergoing training. He or she might use the PPS to help make an informed decision about the potential 
success of this student when compared to the success profiles of the students already in the data base. 



The Observed Data 

The data analyzed in this report were provided by LT Henry Williams. The ASTB test scores were compiled at 
the Naval Operational Medicine Institute (NOMI), and the API scores came courtesy of the Naval Schools 
Command (NASC), both at NAS Pensacola. The primary flight training attrition data were collected from Training 
Wing 5, which consists of three training squadrons, VT-2, VT-3, and VT-6, located at Milton, Florida. The 
primary flight training attrition data covered the time span from June 1994 to January 1998. The 1,054 entries in 
the data base were composed exclusively of Navy and Marine Corps student pilots. Only those students who had 
taken the version of the ASTB as revised in 1992 were included in the data base. A total of 94% of the students 
were male and the remaining 6% female. From the overall total of 1,054 students in the data base, 936 students 
passed primary flight training and 118 students were attrited (i.e., failed training). 

The analysis in this report is predicated on the assumption of multivariate normality for the predictor variables. 
This section lists the sufficient statistics for this assumption, viz., the sample means and the sample 
variance-covariance matrix. Table 1 presents the means and standard deviations for the five predictor variables 
studied in this report. MVT, MCT, SAT, and ANI are four subtests from the ASTB. MVT stands for Mathematics 

Table 1: Means, standard deviations, and sample sizes over the five predictor variables for the two categories of 
pass and fail in primary flight training. 

Test 
Mean 

Pass 

SD N Mean 

Fail 

SD N 

MVT 27.18 5.03 936 26.47 4.79 118 
MCT 22.15 3.70 936 20.36 3.90 118 
SAT 27.79 4.77 936 26.36 5.28 118 
ANI 19.16 3.31 936 17.85 3.17 118 
NSS 52.01 5.65 935 47.23 6.53 118 

and Verbal Test, MCT stands for Mechanical Comprehension Test, SAT stands for Spatial Apperception Test, and 
ANI for Aviation and Nautical Interest. NSS stands for Navy Standard Score, a standardized score for overall 
performance in API. These five scores are given for two groups, (1) those who successfully graduated from 
Primary flight training, and (2) those who attrited from Primary flight training for any reason. These groups will 
be called the PASS group and the FAIL group respectively. The sample sizes for each group are also given in 
Table 1. The attrition rate for this sample is seen to be 118/1054 (11.2%). This is quite typical for the attrition 
rate in primary training which historically has hovered about the 10% mark. The mean score is higher for the 
PASS group than for the FAIL group on all five predictor variables. The standard deviations across the two groups 
seem to be roughly comparable. 

Table 2 gives the sample variance-covariance matrix for the PASS group while Table 3 gives the same 
information on the FAIL group. The values along the diagonal of each matrix give the sample variances of the 
appropriate variables, i.e., the square of the standard deviations from Table 1. 

Although the variance-covariance matrix is appropriate for the numerical computations described later, the 
sample correlations among the five predictor variables are more informative to our eyes. Tables 4 and 5 exhibit the 
pattern of correlations for the PASS group and the FAIL group, respectively. The correlations appear to be quite 
similar for the two groups. 



Table 2: The sample variance-covariance matrix Spass for N = 936 subjects who passed primary flight training. 

Test MVT MCT SAT ANI NSS 

MVT 25.335 
MCT 8.375 13.660 
SAT 2.156 4.204 22.790 
ANI 2.050 4.252 3.043 10.930 
NSS 9.760 6.616 3.822 3.825 31.947 

Table 3: The sample variance-covariance matrix Span for JV = 118 subjects who failed primary flight training. 

Test MVT MCT SAT ANI NSS 

MVT 22.987 
MCT 6.701 15.188 
SAT -1.721 5.399 27.875 
ANI 1.851 3.756 2.347 10.079 
NSS 11.967 8.687 6.095 1.531 42.691 

Table 4: The correlation matrix of the five predictor variables for the N = 936 subjects who passed primary flight 
training. 

Test MVT MCT SAT ANI NSS 

MVT 1.000 
MCT .450 1.000 
SAT .090 .238 1.000 
ANI .123 .348 .193 1.000 
NSS .343 .317 .142 .205 1.000 

Table 5: The correlation matrix of the five predictor variables for the N — 118 subjects who failed primary flight 
training. 

Test MVT MCT SAT ANI NSS 

MVT 1.000 
MCT .359 1.000 
SAT -.068 .262 1.000     ■ 
ANI .122 .304 .140 1.000 
NSS .382 .341 .177 .074 1.000 



Making the decision on a new candidate 

How do you make the decision to predict a pass or a fail for any given candidate on the basis of the observed 
scores on the five predictor variables? The answer to this question is to use Bayesian Decision Theory (Berger [1], 
Coombs, Dawes and Tversky [2]). Within this approach, we try to find that decision which has the minimum 
expected loss with respect to the probability of passing or failing. 

Expectation in statistical parlance is the same as the average, with the average defined for any generic discrete 
function f(x) as, 

£[/(*)]=X)/(*i)Pto). (1) 
.7=1 

The loss corresponds to the function f(x). It depends on two arguments: (1) what actually happened, called the 
state of nature, 0; and (2) the decision taken. The decision is sometimes called the action, and we will write a* 
as the fcth decision taken to avoid confusion with d*. The uncertainty surrounds which state of nature, 0,-, will 
actually occur and so we represent this uncertainty with a discrete probability distribution, P(0). In symbols, the 
expected loss is written as, 

expected loss of decision ak = ^ L(0j, ak) P(0j)- 
J=I 

The current situation has only a total of n = 2 possible true states of nature, 

(2) 

0i   =   actual pass 

02   =   actual fail 

and two possible decisions that could be taken under each state, 

ai   =   predict pass 

02   =   predict fail. 

There are four possible losses corresponding to all possible combinations of the two decisions and the two states of 
nature. The losses for each decision under each state of nature are represented by the loss matrix shown in Table 6. 

Table 6: The loss matrix for the decision problem of choosing candidates to enter primary flight training. 

Actual Pass 

Actual Fail 

Predict Pass 
ai 

0i 

Predict Fail 
02 

L{0i,a{) 
0 

L(0i,a2) 
Ci 

L{02,ay) 
c2 

L(02,02) 
0 

By convention, a loss of 0 is assigned to the two correct decisions, i.e., predicting that a candidate will pass 
when he or she actually does pass training, or predicting that the candidate will fail when she or he actually does 
fail training. A placeholder is inserted for the monetary costs incurred, C\ and C2, for the two ways to make an 



incorrect decision, that is, predicting that a candidate will pass when he or she actually fails training, or predicting 
fail when the candidate actually passes training. 

Inserting these costs into Equation (2) results in 

expected loss ai   = £(0X, ai)P(0i) + £(02, ai)P(02) 

expected loss predicted pass   = [Ox P(Pass)] + [C2 x P(Fail)] 

= C2xP(Fail) 

expected loss a2   = £(0i, a2)P(6i) + L(62, a2)P{92) 

expected loss predicted fail   = [Ci x P(Pass)] + [0 x P(Fail)] 

=   Ci x P(Pass) 

The decision rule itself is quite simple. If the expected loss of the predicted pass is less than or equal to the 
expected loss of the predicted fail, then predict pass, otherwise predict fail. 

C2 x P(Fail) < Cx x P(Pass) 

C2 < P(Pass) 
P(Faü) 

P(Pass) 
P(Fail) 

> c2 
Ci 

Then Predict Pass 

Else Predict Fail 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Numerical examples of decision rule 

This section presents some numerical examples of the decision rule as given in Equation (11). It also illustrates 
that the probability of passing needed to predict a pass will change with the costs associated with the incorrect 
decisions. For the first example, let the cost of training someone who later fails be greater than the cost of 
rejecting someone who would have passed training. Table 7 presents an example of such a situatioa 

Table 7: The loss matrix for the decision problem of choosing candidates to enter primary flight training when it is 
more expensive to train eventual failures than to reject some successful candidates. 

Actual Pass     #i 

Actual Fail      62 

Predict Pass     Predict Fail 
Oi a2 

0 
L($i, a2) 
$200,000 

1(02,(1!) 
81,000,000 

£(02, a2) 
0 

In an ideal situation these costs would be determined through a detailed economic analysis conducted by 
experts in training and selection. Unfortunately, I am unfamiliar with airy such analyses. The costs used in the 



following examples were chosen by me as not unreasonable numbers to illustrate the mechanics of the decision 
rule. In any case, the purpose of this report is to provide the proper quantitative framework for making decisions 
about predicting a pass or a fail for an individual. The "correct" cost figures, when agreed upon, can be easily 
inserted into the loss matrix. In the PPS, the main utility of the loss matrix may be in allowing users to assess the 
effects of different decision thresholds in a "what-if' exercise. 

Suppose that the probability of passing primary flight training based on the scores the candidate obtained on 
the five predictor variables is 80%. Therefore, the probability of failing is 20%. 

P(Pass) 
P(Fail) 

> C*2 
Ci 

Then Predict Pass 

Else Predict Fail 

P(Pass) .80 
P(Fail) .20 

= 4 

c2 
Ci 

5 

4 2 5 

Therefore, Predict Fail 

In this case, a probability of passing equal to 80% is simply not high enough to commit to a decision to predict a 
pass because of the high cost of the wrong decision to let someone into training when they fail. If a candidate's 
probability of passing based on the test scores were raised to 90% then 

P(Pass)     C2 
P(Fail) - Cy 

and the candidate would be admitted into training as a predicted pass. 

As the ratio of losses for these incorrect decisions start to climb, then it becomes even harder for a candidate to 
get accepted into training. As the following numerical example illustrates, an increased ratio of C2 to Ci raises the 
threshold for acceptance into training even higher. Table 8 presents the scenario when training is very expensive, 
but the pool of qualified applicants wishing to be trained is large. In this altered situation, 

P(Pass) 
P(Fail) - 15 

therefore, the probability of passing must be around 94% or greater for the decision rule to recommend acceptance 
into training. Going back to first principles, this means that the average loss for predicting a pass for any 
probability of passing less than 94% is greater than the average loss of predicting a fail. 

Of course, the change in the decision criterion can work just as well in the opposite direction. If the losses for 
the two incorrect decisions were judged to be of equal value as in Table 9 below, then the ratio of costs would 
change to 



Table 8: The loss matrix for the decision problem of choosing candidates to enter primary flight training when 
training is very expensive but the pool of qualified applicants is large. 

Actual Pass     6X 

Actual Fail       02 

Predict Pass     Predict Fail 
Oi 0-2 

£(0i, ai) 
0 

Ußx,a2) 
$100,000 

£(02,01) 
$1,500,000 

L{92, a2) 
0 

As soon as the ratio of the probability of passing to the probability of failing, 

P(Pass) 
P(Fail) 

becomes greater than 1, a predicted pass results. A probability of passing equal to 50% or greater would be 
sufficient to predict a pass in this case . 

Table 9: The loss matrix for the decision problem of choosing candidates to enter primary flight training when it is 
equally as bad to reject someone who could have passed as it is to admit someone who fails. 

Predict Pass     Predict Fail 
ai 0,2 

Actual Pass     B\ 

Actual Fail       02 

£(0i,ai) 
0 

L(9i, a2) 
$500,000 

L{62, oi) 
$500,000 

L(92,a2) 
0 

The derivation of the posterior odds 

Except for the potential subjective or economic difficulty in assigning the costs, Cx and C2, the calculation of 
this part of the decision rule is trivial, unlike that of the calculation of the ratio of probabilities. A great degree of 
non-trivial mathematics must be brought to bear in that case. Fortunately, the difficult part of the mathematics has 
already been worked out by Press [3] and Geisser [4]. In this section, we present the general outline for the 
formula of the ratio, 

P(Pass) 
P(Fail) 

as needed for the decision rule. The ratio is commonly known as the "posterior odds." The formula used in the 
computer program to calculate the numerical results is also given at the end of this section 

Actually, P(Pass) or P(Fail) is too simplistic a notation for what is really a probability based on considerable 
information. That information consists of the scores obtained on the five predictor variables by the candidate we 
wish to classify. Thus, let Dn+1 stand for these scores for the "n + 1st" subject, i.e., the new candidate we wish to 
classify. Then Dn is the notation for the data in the database from the n students who also have scores for the 
predictor variables and for whom we know, as well, their success or failure in primary flight training. 

Therefore, we now employ the more accurate notation of 

P(Pass|Dn+1) and P(Fail|Z?n+1) 



as the posterior classification probability for passing and failing. By Bayes's Formula these two posterior 
probabilities are written as a function of the likelihood and the prior probabilities, 

p,p    .n     v   _    P(A,+1lPass) P(Pass)  .   . 
K      '   n+1)   ~    P(Dn+1|Pass)P(Pass) + P(D„+1|Fail)P(Fail) V   ' 

p,Fa,m     x   _    P(Dn+1|Fail)P(Fail)  . 
K     '  n+1}   ~   P(Dn+i|Pass)P(Pass) + P(£>n+i|Fail)P(Fail) v   ; 

In forming the posterior odds, we can cancel out the denominator in the posterior probability of both terms. The 
posterior odds now can be written as a ratio of the likelihood times the prior probability for passing and failing, 

P(Pass|A,+i) = P(A,+i|Pass) P(Pass) ,   . 
P(FaU|Dn+1)      P(£>n+1|Fail)P(Fail) l   ; 

For an introduction to the Bayesian approach as used in scientific inference, see Blower [5]. 

So far the development has been relatively straightforward, but now the difficult part of the mathematics 
intrudes. The likelihood terms in Equation (14) are called predictive densities in the Bayesian approach The 
predictive density for either one of our two classification categories should be written as 

P(Dn+1 |Pass, Dn) or P(£>„+i |Fail, Dn) 

showing the dependence on the past data, Dn. The predictive density marginalizes over all the parameters used in 
the assumptions for how the scores are generated. In this case, the assumption is multivariate normality for the 
scores with two parameters, \i and S, where \i is the vector of population means for the scores and £ is the 
population variance-covariance matrix of the scores. Marginalizing over these two parameters to find the predictive 
density yields, 

P(Dn+i|Pass,Dn) = JJ P{Dn+i\n,E.Pass, Dn) P((i, S|Pass, £>„) dfiPass dSPass (15) 

This is the product of the likelihood of the scores for the new candidate and the posterior probability of the 
parameters with this product taken over all values of the parameters. 

Skipping over all the gory mathematical manipulations of Equation (15) (see Press [3], pp. 153-155 for the 
details), we show only the final result. The predictive probabilities for the scores of a new candidate (Dn+i) given 
the old data (Dn) and a particular category (Pass, Fail) are shown first in a general outline form and then in 
explicit detail. 

P(Dn+i|Pass,£>„)   =   term lx term 2 (16) 

P(Dn+i |Fail, Dn)   =   term 3 x term 4 (17) 

P(£>n+1|Pass,£>n)xP(Pass) .   . 
P(£>n+1|Fail,Dn)xP(Fail) l   > 

_   term 1 x term 2     P(Pass) .   . 
term 3 x term 4 X P(Fail) ^   ' 

For constructing the computer program to calculate the posterior odds, the detailed formulas follow. Terms 1 and 3 
are patterned alike as are terms 2 and 4. 

1    =    \{Np*-l)Sp*\WT(^}T(&^}NPm(NPM + lYl* 



NFa„/2 

term 2   =    [l + (j^ry) (AH-I - xFail)
T S^Li (AH-I - »F.«) 

term 3   =    \(NPass - 1) gp^lVa r (^f^j T (^ ~ P) NFail(NPass + If'2 

term 4   =    h + (^f^lj P«+i - äpa*s)
T S?L P»+i - *Pass) 

NPass 12 

Table 10 briefly describes the symbols used in Equations (21) through (24). 

Table 10: Explanation for symbols in Equations (21) through (24). 

(22) 

(23) 

(24) 

Symbol Explanation 

P(Pass) P(Fail) Prior Probability of Passing or Failing 

Npass Npail Sample sizes of Pass and Fail groups 

V Number of predictor variables 

&Pass »Foil Sample means on p tests 

Spass SFail Sample covariance matrices for p tests 

Ai+i Scores on predictor variables for new candidate 

(Ai+1 — Xpass)T (Ai+1 — XFail)T Transpose of difference between vector of new score and 
sample means 

\Spass\ \SFail\ Determinant of sample covariance matrices 

°Pass "Fail Inverse of sample covariance matrices 

T{N) Gamma function with N as argument 

Statistical Decision Theory 

Before beginning the numerical exercises, we would like to express the equations just derived in a form 
compatible with Bayesian statistical decision theory. The decision algorithm from statistical decision theory can be 
stated in the following simple terminology. If the likelihood ratio is greater than some response threshold, then 
commit to a particular decision. In symbols, 

If C{x) > ß then predict appropriate outcome 

Equation (11), as the ratio of the posterior odds, should now be correctly written as 

„ P(Pass|£>„+i)     Co. ff o/T7 -,ir.    \ > -^ then Predict Pass otherwise Predict Fail P(FailDn+i)     d (25) 



Substituting Equation (19) for the posterior odds yields, 

P(Dn+l\?ass,Dn) x P(Pass) 
P(Al+1|Fail,Dn)xP(Fail) 

P(Z3n+1|Pass,Dn) 
P(A,+i|Fail,.Dn) 

>    -==■ 
9i 
Cx 

>     -z=- 
C2     P(Fail) 
d     P(Pass) 

(26) 

(27) 

The left hand side of Equation (27) is in the form of a likelihood ratio since it is the ratio of the probability of 
the data from a candidate given the old data and the Pass group over the probability of the data from a candidate 
given the old data and the Fail group. That is, 

£(x) = £(data from candidate) 

The right hand side of Equation (27) is a function of the costs of making correct and incorrect decisions and the 
prior odds of failing over passing. Together they make up ß, the response threshold. Equation (27) therefore 
represents a decision algorithm in the form of 

If C{x) > ß then predict Pass 

Numerical computations 

Numerical examples of the Baysian decision rule as derived in the previous sections are presented here. Table 
11 shows the scores obtained on the five predictor variables for three new candidates for whom we would like a 
classification as a predicted pass or a predicted fail. The criterion for such a prediction will be to minimize the 
monetary loss experienced with an incorrect decision For this first set of examples, we arbitrarily set the ratio 
Cz/Ci equal to 5, merely as a reasonable supposition about costs. For example, an incorrect rejection of a 
candidate might cost 8100,000, and permitting an eventual attrition into primary flight training might cost 
$500,000. Again, the five predictor variables are the scores on four subtests of the ASTB, the MVT, MCT, SAT, 
and ANL, and the final composite grade from API, NSS. According to historical records, it is known that the 
probability of passing primary flight training given the current selection standards, but using no additional 
information as we are doing here, is about 90%. Therefore, we will set the prior probability of passing at 90% and 
the prior probability of failing at 10%. The posterior classification probabilities are calculated by using Equations 
(21) through (24). The sample means are taken from Table 1 and the sample covariances from Tables 2 and 3. The 
sample size for the Pass group is NPass = 936 and the sample size for the Fail group is NFOU = 118. The 
number of predictor variables, p, is equal to 5. The Dn+i are the scores listed in the five columns of Table 11 
after the Candidate column 

Table 11: Examples of Bayesian decision rule for various scores obtained by three candidates. The loss ratio for 
this example is set at C2/C1 = 5. 

Candidate MVT MCT SAT ANI NSS P(Pass\Dn+1) Post. Odds Decision 

1 
2 
3 

27 
26 
24 

22 
20 
18 

27 
26 
23 

19 
17 
15 

52 
47 
40 

.9413 

.8744 

.6608 

16.037 
6.963 
1.948 

Predicted Pass 
Predicted Pass 
Predicted Fail 

The first candidate scored close to the sample mean of the 936 students who passed primary flight training. It 
is not surprising therefore, that the posterior classification probability is quite high (at about 94%) that this 

10 



candidate will pass training. Even so, a high probability of passing training is not, in and of itself, enough to make 
a decision to predict a pass. For this candidate though, the posterior odds of 16.037 are greater than 5 so we can 
safely predict pass given our cost structure. The second candidate had lower scores on all five predictor variables 
and the associated posterior classification probability is correspondingly lower at around 87%. However, the 
posterior odds for this candidate are still greater than 5, so we again predict a pass. Had the cost structure been 
different, say C2/Ci = 10, in order to emphasize the importance of admitting into training only those with a very 
high probability of success, then a different decision would be warranted for this candidate. The third candidate 
achieved even lower scores to the point where the posterior classification probability of passing is lowered to 66%. 
Now the posterior odds drop below the threshold of 5, and the decision is made to predict that this candidate will 
fail. 

Effect of varying parameters 

It is easy to examine the effect on the probability of passing primary flight training by changing any of the 
parameters of the quantitative model. An example is provided of how this can be done by making the following 
changes: 

[1] decreasing the size of the number of students who passed and failed training 
[2] changing the prior probability of passing and failing 
[3] making the tests more discriminatory by widening the gap in the sample means 
[4] increasing the correlation among the predictor variables. 

These four changes are operationalized within the quantitative model by setting the values of the following 
parameters: 

[1] NPass = 400 and NFail = 100 
[2] P(Pass) = .80 and P(Fail) = .20 
[3] xPasa = (28,23,28,20,55) and xFail = (25,19,24,16,45) 
[4] increasing the off-diagonal elements of SPass and SFaü. 

The effect of changing the cost structure on incorrect decisions has already been discussed, therefore this facet 
of the decision rule will be kept the same as in the last numerical example where C2/d = 5. The numerical 
results from the changes just discussed are given in Table 12. Like Table 11, Table 12 gives the scores of three 

Table 12: The effect on the probability of passing and the decision to predict pass or fail from changing parameters 
m the quantitative model. 

Candidate MVT MCT SAT ANI NSS P(Pass\Dn+1) Post. Odds Decision 
1 
2 
3 

28 
26 
28 

23 
20 
23 

28 
25 
28 

20 
17 
20 

55 
47 
45 

.9747 

.5109 

.6088 

38.487 
1.045 
1.556 

Predicted Pass 
Predicted Fail 
Predicted Fail 

candidates on the five predictor variables. As in the last example, the first candidate scores at the mean of the pass 
group, but smce the sample means are further apart than in the first example, these scores are now more 
compelling evidence that this candidate will pass. The posterior odds are 38.487:1 as opposed to 16 037-1 for the 
first example. The second candidate scores better on all tests in that he is above the mean of the Fail group 
whereas his counterpart of the first example was only at the mean of the Fail group. This candidate is a predicted 
fad whereas the candidate in the first example was a predicted pass. Again, this is because the means are more 
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widely separated, with the result that this second test battery is more discriminating. Another contributing factor to 
the predicted fail is the lower prior probability of a pass in this example. 

A curious phenomenon is revealed by the third candidate. For the sake of discussion, this candidate happens to 
be female. She scores exactly the same as the first candidate on the four ASTB tests, but is at the mean of the fail 
group for the API score. The first candidate was a confident predicted pass, but this candidate is an equally 
resounding predicted fail. What happened here? Is the result of just one test score so detrimental to this 
candidate's prospects? 

The answer lies in the nature of the changed covariance matrices. The off-diagonal elements of the covariance 
matrices for both the pass and fail groups were made larger to reflect a situation where the correlation among all 
five tests was extremely high. For example, the true correlation between MVT and MCT was set at .90, and the 
true correlation between MVT and NSS was set at .70. The pattern of intercorrelations for the first four scores 
with the fifth score demands a score close to the mean of the pass group to fit the profile of a pass candidate. The 
discordant score on the last predictor variable is enough, given the extremely high intercorrelations, to make her 
much less like the typical pass candidate. The posterior odds are correspondingly lowered and given the costs of 
the various decisions make her a predicted fail. The fact that the prior probability of a pass was lowered did not 
help this candidate either. 

Another way of looking at this situation of the third candidate is in terms of the number of pieces of 
independent information In the ideal case, there would be no correlation among the five predictor variables and 
the off diagonal elements of the sample variance-covariance matrices would be small. Each of the five test scores 
would then be providing five independent sources of information about the correct category the candidate belongs 
to. In the situation, however, of large off-diagonal elements in the sample variance-covariance matrices, the test 
scores are highly correlated. There are not really five pieces of independent information. For the third candidate 
we could say roughly that there are only two pieces of independent information, one indicating she belongs to the 
pass group and the other indicating that she belongs to the fail group. So, on this viewpoint, it is not surprising 
then that her probability of passing is driven down towards 50%. 

Summary 

The high-level policy decisions that depend on access to selection and training data could be improved by a 
more coordinated effort at upgrading data bases and integrating statistical prediction models. NAMRL believes that 
the Pilot Prediction System is a research effort that will move us closer to that goal. 

This report outlines some initial thoughts on the architecture of the PPS and how it might help its targeted 
audience. More specifically, we have presented in some detail a statistical model that predicts whether a student 
will pass or fail in primary flight training as a function of four selection test scores and overall achievement in 
API. It not only deals with this kind of quantitative information in an optimal fashion through the Bayesian 
assessment of the probability of passing, but also takes into account the judgmental or economic cost factors 
involved in making correct and incorrect decisions. 

A computer program has been written to implement the Bayesian posterior classification probability as well as 
the decision theory aspects. Some numerical examples were presented to show how the program works to predict 
success for candidates who have not yet entered primary flight training, but for whom we have scores on five 
predictor variables. Such a program can serve as one core module in a user friendly, spreadsheet-like 
implementation of the PPS. The PPS implementation philosophy is to shield its users from technical issues such as 
using statistical prediction models to extrapolate from success profiles in a data base. This feature permits them to 
concentrate more fully on the larger manpower and training issues that beset naval aviation 
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